
SELF-ORGANIZATION AND CLUSTERING

N91-21783
ALGORITHMS

James C. Bezdek
Div. of Computer Science
University of West Florida

Pensacola, Flodda 32514

This research was partially supported by NSF Grant # IRI-9003252

ABSTRACT

Kohonen's "feature maps" approach to clustering is often likened to the k or c-means clustering algorithms. In

this note we Identify some similarities and differences between the hard and fuzzy c-Means (HCM/FCM) or

ISODATA algorithms and Kohonen's "self-organizing" (KSO) approach. We conclude that some differences

are significant, but at the same time there may be some important unknown relationship(s) between the two

methodologies. We propose several avenues of research which, if successfully resolved, would strengthen

both the HCM/FCM and Kohonen clustering models. We do not, in this note, address aspects of the KSO

method related to associative memory and to the feature map display technique.

1. INTRODUCTION

Treatments of many classical approaches to clustering appear in Kohonen [1], Bezdek [2], and Duda and Hart

[3]. Kohonen's work has become particularly timely in recent years because of the widespread resurgence of

interest in Artificial Neural Network (ANN) structures. ANNs and pattern recognition are discussed by Pao [4]

and Lippman [5]. Our interest lies with the KSO algorithm as it relates to the solution of clustering and

classification problems and the HCM/FCM models.

2. CLUSTERING ALGORITHMS AND CLASSIFIER DESIGN

Let (c) be an integer, 1< c < n and let X = {x I , x2 Xn} denote a set Qf (n) feature vectors in Rs. X is

numerical object data; the j-th object (some physical entity such as a medical patient, seismic record etc.) has

vector xj as it's numerical representation; Xjkis the k-th characteristic (or feature) associated with object j. Given

X, we say that (c) fuzzy subsets {ui:X,,_ [0,1]} are a fuzzy c-partition of X in case the (cn) values {Uik= ui(xk), 1 <

k < n, 1 _;i < c} satisfy three conditions:

0 < Uik< 1 for all i,k (la)

143

XUik = 1 for all k ; (113)

0 < T.,Uik< n for all i (lc)

Each set of (cn) values satisfying conditions (1) can be arrayed as a (cxn) matdx U = [Uik]. The set of all such

matrices are the non-degenerate fuzzy c-partitionsof X:

Mfcn = {U in :Rcn I Uiksatisfies (1) for all i and k}.

And in case all the Uik'Sare either 0 or 1,we have the subset of h_ (or crisp)c-@rb'tio_ of X:

Mcn= {U inMfcn I Uik= 0 or I forall i and k}.

(2)

(3)

The reason these matrices are called partitionsfollows from the interpretation of Uikas the membership of xk in

the i-th partitioning subset (cluster) of X. Mfcn is more realisticas a physical model than Mcn, for it is common

experience that the boundaries between many classes of real objects are in fact very badly delineated (i.e.,

really fuzzy). The important point is that a// clustering algorithms generate solutions to the clustering problem

for X which are matrices in Mfcn. The clustedngproblem forX, is, quite simply, the identificationof an "optimal"

partition U of X in Mfcn; that is, one that groups together object data vectors (and hence the objects they

represent) which share some Well defined (mathematical) similarityl it is our hope and implicit belief, of course,

that an optimal mathematical grouping is in some sense an accurate portrayal of natural groupings in the

physical process from whence the object data are derived. The number of clusters (c) must be known, or

becomes an integral part of the problem.

3. THE ISODATA AND KSO ALGORITHMS

The most well known objective function for clustering is the least total squared error function:

Jl(U,v ; x) = _ Uik(llXk-Villi)2 , (4)

where v = (v1, v2 Vc) is a vector of (unknown) cluster centers (weights or prototypes), v i E R.s for I < i _<C,

U E Mcn is an unknown hard c-partition of X, and Ilollzis the Euclidean norm on _s. Optimal partitions U* of X

are taken from pairs (U*, v*) that are "local minimizers" of Jl" It is important to recognize the geometric Impact

that the use of a norm function in J1 as the criterion of (dis)similarity has on "good clusters" (here II.lli, but

more generally, any norm on R.s induced by a positive definite weight matrix A, as described below). Figure 1

illustrates this graphically; partitions that optimize J1 will, generally speaking, contain clusters that conform to

144

thetopologythatis inducedon_s by the eigenstructure of the norm-inducing matrix A. When A = I, good

clusters will be hyperspherical, as the one in the left portion of Rgure 1; otherwise, they will be hyperelliptical,

as the one on the rightside of Figure 1.

Figure 1. Geometry of Cluster Formation in Norm-Driven Clustering Algorithms

v2

As is evident in Figure 1, clusters that optimize J1 are formed on the basis of two properties: location and

shape. Location information is contained in the lengths of the data vectors and "cluster centers" or prototypes

{vi} from the origin, whilst shape information is embedded in the topology induced by the norm in use.

Roughly speaking, these correspond to the mean and variance of probability distributions, so (4) is in some

sense analogous to regarding the data as being drawn from a mixture of probability density functions (indeed,

there are special cases when (4) yields identical results to the maximum likelihood estimators of the parameters

of a mixture of normal distributions). Although the norm shown in (4) is the Euclidean norm, generalizations of

J1 have used all five of the usual norms encountered in numerical analysis and paftem recognition - viz, the

Euclidean, Diagonal and Mahalonobis inner product A-norms; and the p = 1 and p - _ (city block and sup)

Minkowski norms. The defining equations and unit ball shapes for these two families of norms are shown in

Figure 2.

As an explicit means for finding optimal partitions of object data, J1 was popularized as part of the ISODATA

('lterative Self-Organizing Data Analysis') algorithm (c-Means + Heuristics) by Ball and Hall [6] in 1967. It is

interesting to note that Kohonen apparently first used the term "self-organizing" to describe his approach

145

about 15 years later [1]. Apparently, the feature of both algorithms that suggests this phrase is their ability to

iteratively adjust the weight vectors or prototypes that subsequently represent the data in an orderly and

improving manner as the algorithms proceed with iteration. We contend that this use of the term "self-

organizing" in the current context of neural network research is somewhat misleading (in both cases). Indeed,

if the aspect of FCM/HCM and KSO that entitles us to call them self-organizing is their ability to adjust their

parameters dudng "training', then every iterative method that produces approximations from data is selfo

organizing (e.g., Newton's method!). On the other hand, if this term serves to indicate that the algorithms in

question can find meaningful labels for objects, without extemal interference (labelled) training examples),

then all clustering algorithms are "self-organizing'. Since the terminology in both cases is well established, the

only expectation this writer has about the efficacy of these remarks is that they caution readers take the

semantics associated with much of the current Neural Network literature with a large grain of salt.

Figure 2. Geometry of Level Sets for Inner product A-norms and Mlnkowski p-norms

Unit Ball Shapes in the A - norms

L A = {x : <X,X>A= xTAx = (llxll A)2= 1}

I

I

I

i|i

I

I

I

ill x k - vi II A = ((Xk" vi)TA(x k" vi))(1/2)I

EV's of pos-definite (A) Induce shapes

Inner product : Hilbert Space Structure

Differentlable in All Variables

Unit Ball Shapes in the p - norms

Lp = {x : Ilxllp = 1}

2

ll x k" v i lip = (z IXkj - _j Ip)(1/P)]

II x k" vi II1 = (z lXkj - vij I)

II x k" vi Iio== (_ax {Ix kj "vi I I})

p : 2 : Hilbert ; p _ 2: Banach Spaces

146

Dunn [7] first generalized J1 by allowing U to be fuzzy (m=2 below) and the norm to be an arbitrary inner

product A-norm. Bezdek [8] generalized Dunn's functional to the fuzzy ISODATA family written as:

Jrn(U,v;X) = Z:_ikm(llXk-VillA)2 , (5)

where m E [1, oo)is a weighting exponent on each fuzzy membership; U e Mfcn is a fuzzy c-partition of X; v =

(Vl, v2, ..., Vc) are cluster centers in :R.s ; A = is any positive definite (s x s) matrix; and (llXk-VillA)2 = (Xk-vi)TA

(Xk-Vi) is the OG distance (in the A norm) from xk to vi .

In 1979, Gustafson and Kessel [8] derived necessary conditions to minimize an extension of (5) with (c)

different norm inducing matrices. In 1981 Bezdek et. al. [9] generalized (5) by allowing the prototypes to be

(convex combinations of) linear manifolds of arbitrary and different dimensions. In 1985 Pedrycz [10]

introduced a way to use partially labeled data with (5) that amounts to a mixed supervised-unsupervised

clustering scheme. In 1989 Dave [11] introduced a generalization of (5) that uses hyperspherical prototypes

for v. In 1990 Bobrowski and Bezdek [12] used the city block and sup norms with (5), thus extending the c-

Means algorithmsto the most important Minkowski norms (p = 1 and p = _o).

Necessary conditions that define iterative algorithms for (approximately) minimizing Jm and its generalizations

are known. Our interest lies with the cases represented by (4) and (5). The conditions that are necessary for

minima of J1 and Jm follow"

Hard c-Means (HCM) Theorem [21. (U, v) may minimize T_T,Uik(llxk- viii A)2 only if

Uik = 1; (llxk- viii A)2 = mini{(llXk- vi II A)2 } ; and =0; otherwise r (6a)

vi = Z;UikXk/ T.Uik (6b)

Note that HCM produces hard clusters U e Mcn. The HCM conditions are necessary for "minima'of (4) (i.e.,

with A=I, the Euclidean norm on :R.s), and, as we shall note, are also used to derive hard clusters in the KSO

algorithm. The well known generalization of the HCM conditions is contained in the:

Fuzzy c-Means (FCM) Theorem [21. (U,v) may minimize T,T,uikm(llxk - viii A)2 for m > 1 only if •

_k = (:C(llXk'_llA /llXk-VjllA)2/(m1))'1 (7a)

147

vi = I;(Uik)m xk / T-.(Uik)m (7b)

The FCM conditions are necessary for minima of (5). There is an alternative equation for (7a) if one or more of

the denominators in (7a) is zero. These equations converge to the HCM equations as m-_l from above, and

for (m > 1), the U in FCM is truly fuzzy, i.e., U E (Mfcn- Mcn). The FCM algorithms are simple Picard iteration

through the paired variables U and v. Because we want to compare this method to the KSO algorithm, we give

a bdef description of the FCM/HCM algorithms.

(Parallen c-Means (FCM/HCM) Aloorithms

<FCM/HCM 1> : Given unlabeled data set X = {x1, x2 , Xn}. Fix : 1 < c < n; 1 < m < 0=(m=l for HCM);

positive definite weight matrix A to induce an inner product norm on :R,s ; and ¢, a small positive constant.

<FCM/HCM 2>: Guess v0 = (v 1,0' v2,0 Vc,0) _ _cs (or, initialize U0 e Mfcn).

<FCM/HCM 3>: For j = 1 to J:

<3a> :Calculate Uj with {vi,j.1 } ;

<3b>: Update {vi,j_l} to (vi,j} with Uj ;

<3c>: If max i { Ilvi,j-1 to vi,j II } <¢, then stop andput(U',v')= (uj,vj); Else" Next j

This procedure is known to converge q-linearly from any initializationto a local minimum or saddle point (U',v')

of Jm" Note again that the update rule for the weights {vi} at step <3b> is a necessan/condition for minimizing

Jm" Moreover, all (c) weight vectors are updated using all (n) data points simultaneously at each pass; i.e., the

weights {vi} are not sequentially updated as each xk is processed. This is why we call the above description a

"parallel" version of c-means, as opposed to the well known sequential version.

There is a sequential version of hard c-means (SHCM) that can be used to minimize Jl' and readers should be

aware that it may produce quite different results than HCM on the same data set. One iteration of the SHCM

algorithm is as follows: beginning with some hard U, the centers {vi} are calculated with (6b). Once the

prototypes are known, one returns to update U. Beginning with x 1, each point is examined, and moved from,

148

say,clusteri to clusterj, soastomaximizethedecreaseinJ1(ifpossible).Thenthetwoaffectedcenters{vi ,

vj} and rowsi andj of U areupdatedusingequations(6). Onecomplete pass of SHCM consists of testing

each of the n data points in X, and effecting a transfer at each point where a decrease in J1 can be realized.

SHCM terminates when a complete pass can be made without transfers. We mention this version of HCM

because it is SHCM that most closely resembles the KSO algorithm. Figure 3 is a rough depiction of how the

HCM method might begin; Figure 4 indicates a desirable situation at termination. In Rgure 3 the initial hard

clusters subdivide the data badly, and the overall mean squared error (the sum of squares of the solid line

distances between data points and prototypes) is large; at termination, the prototypes lie "centered" in their

clusters, the overall sum of squared errors is low, and the hard 2-partition subdivides the data "correctly" (this

is what happens if we are lucky !).

Figure 3. An Initial 2-Partition and Prototypes for HCM

V

149

Figure 4. A (Benevolent) Final Configuration of 2-Partition and Prototypes for HCM

Kohonen'smethoddiffersfromthec-meansapproachinseveralimportantways.First,it is nota norm-driven

scheme.Instead,theKSOmethodusesthegeometricnotionof orientation matching, depicted in Figure 5,

as the basic measure of similarity between data points and cluster centers. Second, there is no partition U

involved in the KSO algorithm. Instead, an Initial set of cluster centers are iteratively updated without reference

to partitions of the unlabeled data. The underlying geometry of the criterion of similarity is shown in Figure 5.

The measure of similarity, as shown in Figure 51 is the angle between a data_int x and prototype V (in the

neural network community, the vectors {vi} are often called "weight" vectors; each one being attached or

identified with a "node" in the network). Information that the data set may contain about cluster shapes in

feature space is lost (i.e., not used by cos(G)); and if the data are normalized at each step to be vectors of

length 1, as they usually are in the KSO approach, location information is lost as well. Consequently, the

geometry favored by the KSO criterion of similarity is data substructures that lie in angular cones emanating

from the odgin. We emphasize that in real data, either type of criterion - the c-means type norm driven

measure, or the KSO angular measure - may or may not be appropriate for matching the data. As with all

clustering problems, the question is not - which is better?, the question is, which is better for this data set? In

order to effect comparison with the c-means model, a brief description of Kohonen's algorithm follows.

150

Figure 5. Geometryof Cluster Formation in Orientation Matching Clustering Algorithms

_ cos(e) = < x,v > = 1 - IIx-vll2 / 2 I

Kohonen's (KSO_ Clusterlna Algorithm

<KSOI> • Given unlabeled, "ordered" data set X = {x 1, x2 Xn}. Fix- 1 < c'; Choose update scale factors

{o_j}so that { u.j } -* 0; Zu.j= _o,_j)2 < 0o ; Choose update neighborhood "radii"{ pj } E {0,1,2 C*}:

<KSO2> Guess (unit vectors) v0 = (v 1,0 ' v2,0 Vc*,0) _ R'c*s

<KSO3> Forj= 1to J: • For k = 1to n:

<3a>" Find i'(k) st (llxk-vi.(k)lll)2 = rnin{(llxk-Vj(k)lll)2

151

<3b>:ForindicesN*(k)= i*(k), i*(k) + 1.... i*(k) + pj Update vt,j_1 •

vt,j = vt,j_1 + o_j(xk- vt)/11vt,j_1 + o_j(xk- vt) IIz;otherwise, vt,j = vt,j. 1 . (8)

Next k; Next j

We have used c* instead of c in this procedure to emphasize the fact that Kohonen's method often uses

"multiple" prototypes, in the sense that even though (unbeknownst to us I) X contains only c clusters, it may

be advantageous to look for c* > c cluster centers; this is a further difference between the c-means and KSO

strategies. This is one form of Kohonen's approach; other update rules have been used. The geometry of the

update rule for the weight vectors in (8) is depicted in Figure 6. Thus, if we are at point xk, as shown in Figure

6, <3a> of the KSO algorithm simply finds the current prototype (Void) closest to xk in angle (minimizing the

angle is equivalent to the formula in <3a>). If the current center is called Vold = vi.(k) as in Figure 6, then

update equation (8) connects Vold = vi.(k) to the vector xk , rotates Vold to the new position Vnew , and

finally normalizes Vnew.

The KSO procedure is exactly like SHCM in that it updates (some subset of the) prototypes sequentially after

the examination of each data point. Figure 7 indicates the geometry of the scheme specified in <3b>; the

basic idea is that once the prototype Vold closest to the current data point is found, all prototypes in a

neighborhood of the "winner" are also updated.

Figure 6. The Geometry of Kohonen's Updating Rule

(1) min (0)

Xk

(2) Rotate

void --* vnew

Vnew

Void

152

Figure 7. KSO UpdaUngof Prototypes In the Neighborhood N*(k) of "Winner" Vl,(k)

Feature Web in JRs

Although the "feature web" shown in Figure 7 is conceptualized here as being in R s, it has actually been

displayed only the case s = 2. Kohonen has shown that this process converges, in the sense that the {vt,j}_

{vt*} as {o_j}40, in the special case s=2. Moreover, the limiting{vt*} preserve a "topological ordering"property

of the clata set X on an array of output nodes associated to the weight vectors. Iteration in the KSO method

thus trains the weight vectors {vt*} so that they preserve "order" in the output nodes. As previously noted,

the KSO method does not use or generate a partition U of the data during training. However, once the weight

vectors stabilize, the KSO model produces a hard U by following the nearest prototype rule below.

More specifically, once a set of prototypes {vi} are found by "training" on some data set X (this includes all four

methods described above, HCM, FCM SHCM and KSO), they can be used to label any unlabeled data set.

For any vector x E R s, the HCM equation for Uik defines a (plecewise linear) nearest prototype classifier:

The Nearest Prototype Classifier Decision Rule : Given {vi}' Compute, non-iteratively,

partitionof (any) data X with HCM equation (6a):

the hard c-

153

Uik=

1; ((llxk-viiiz))2 = minj{(llxk-viiiz)2 }

O; otherwise

(9)

Note that we have written (9) with the Euclidean norm. Theorem 2 suggests that any scalar product induced

A-norm might be used in the formula; however, interpretation of the subsequent decision rule as discussed

above becomes very difficult.Thus, while it makes sense geometrically to consider variations in the norm as In

(7) while searching for the cluster centers, it is much less clear that norms other than the Euclidean norm

should be used during classification. Figure 8 is a rough depiction of how the KSO method might begin;

Figure 9 shows the situation after termination of KSO, followed by a posteriori application of (9) to find an

"optimal" hard c-partition U corresponding to the final weights. A question about how rule (9) is used with the

KSO prototypes remains: how do we, without labeled data, assign one of c < c* "real" labels to subsets of the

c* weight vectors found by the KSO scheme? The same question applies to FCM - we still need to decide

which of the c "real" labels belongs to each prototype - the problem is just more pronounced when there are

multiple prototypes for each class.

Figure 8. Initial Configuration of Weight Vectors in the KSO Scheme

154

Figure 9. Terminal Weight Vectors and an HCMPartition In the KSOScheme

o O

4. DISCUSSION AND CONCLUSIONS

First, we itemize the major differences between ISODATA and KSO •

(D1) FCM, HCM and SHCM are intrinsic clustering methods - i.e., one of their inputs is an unknown partition,

and one of their outputs is a partition of unlabeled data set X which is optimal in the sense of minimizing a

norm driven objective function. The KSO method, on the other hand, needs an a posteriod rule such as

the nearest prototype rule at (9) to generate a partition..... of the data non-iteratively. We might call this an

extrinsic clustering scheme. Moreover, without labeled data that can be used to discover which subsets

of the c* multiple prototypes found by the KSO scheme should be identified with each of the c classes

assumed in (9), there is no general way to even Implement (9) with the KSO rule. Thus, much must be

added to KSO to make it a true clustering method.

(D2) The data set X is used differently. KSO uses the data sequentially (locally) and hence, its outputs are

dependent on local geometry and order of labels, whereas ISODATA utilizes the data globally, and

155

updates both the weights and partition values in parallel at each pass. In this sense KSO is most akin to

Sequential Hard c-Means, which is also sensitive to ordering of labels - this is often regarded as a fatal flaw

in clustering.

(D3) KSO can have multiple prototypes for each class; ISODATA has but one. In clustering, the usual

assumption is that c is unknown, and one resorts to variouscluster validity schemes to validate the resutts

of any algorithm. Since the KSO scheme uses many prototypes, without assuming an underlying "true

but unknown" number of clusters, this is advantageous to the user. However, the dilemma of how to

convert the prototypes into clusters, as discussed in (D1), persists.

(D4) KSO uses local _ (cos 0 = <x,v>) on the unit bali as the measure of similarity between data and

weights, whereas ISODATA uses cluster _ (via the eigenstructure of A) and _ (via the lengths

of the weights and the data) to assess (dis)similarity between the data and prototypes. Thus, the c-Means

approach has a much more "statistical"flavor than KSO. On the other hand, KSO uses the dot product at

each node, in the spirit of the McCutloch-Pitts neuron. Thus, local computations in the KSO scheme

proceed on the basis assumed by many workers in neural network research, and make the KSO scheme

more easily identifiable with this type of computational architecture.

(D5) KSO preserves "order" in a certain sense; ISODATA does not. This property of the KSO method is

perhaps its most interesting distinction. There is little hope that c-Means has a similar property. Since

cognitive science assures us that one aspect of intelligence is its inherent ability to order, this aspect of

the KSO approach again shows well in its favor. A significant line of research concerns whether or notthe

FCM/HCM models possess this, or any similar property.

(D6) Weight updates in the KSO method are intuitively appealing; weight updates in ISODATA are

mathematically necessary: Since the update formula in c-Means finds either real or generalized centroids,

we might claim that this scheme is also intuitively appealing. In this regard the c-Means algorithms

(including SHCM) have a clear theoretical advantage, at least in terms of justification of the procedure

used.

(D7) FCM, HCM and SHCM are all well-defined optimization problems; KSO is an heuristic procedure. An

interesting question about KSO is this: what function is being optimized during iteration? An answer to

this question would be both useful and illuminating. The criterion functions that drive FCM, HCM and

SHCM are well understood geometrically and statistically; discovery of a criterion function for Kohonen's

algorithm might supply a great deal of insight about other properties of the algorithm and its outputs.

156

(D8)KSOpartitionshavesofar beengeneratedwiththe nearestprototyperuleandthe Euclideannorm,
whereasFCM,HCMandSHCMcanbe used with any inner product and two Minkowski norms. Much

research can be done on the issue of how best to use the Kohonen prototypes to find cluster

substructure. There are many natural ways besides the nearest prototype rule to use KSO outputs with

the weights {vi}. For example, one could simply distribute unit memberships satisfying (lb) across the

KSO nodes at each step using distance proportions. This generalizes Kohonen's model from a

"neighborhood take all" to a "neighborhood share all" concept. One certainly suspects that it is possible

to incorporate U _ Mfc n as an unknown in the KSO approach, so that an extended KSO algorithm

creates partitions of the data that are necessary, rather than, as in the current use of the HCM labeling

rule, a heuristic afterthought.

Major similarities between ISODATA and KSO include:

(S1) If we let (U F, VF), (U H, VH), (US, Vs), and (U K, VK) denote, respectively, the pairs found by FCM, HCM,

SHCM and KSO, we note that (UF, VF) is a critical point for Jm' while (UH, VH), (Us, Vs), and (U K, VK)

are, because of the HCM theorem, (possibly different) critical points of Jl" However, (UH, VH) _ (US, Vs)

(U K, VK) generally. This suggests that (i) HCM (and especially SHCM) and KSO as described herein are

most definitely related, and (ii), there should be a generalized (fuzzy) KSO that bears the same

relationship to FCM that the hard c-Means versions bear to the current version of KSO. It seems clear

that there is a stronger mathematical link between FCM/HCM and KSO than is currently known.

Connection of the two approaches begins with careful formulation of a constrained optimization problem

that holds for KSO. This involves finding a global KSO criterion function and necessary conditions that

require the calculation of the weight vectors {vi} as in KSO <3b>.

(S2) Both algorithms find prototypes (weights or cluster centers) in the data that provide a compressed

representation of it, and enable nearest prototype classifier design. Recent work by Huntsberger and

Ajjimarangsee [13] indicates that FCM is at least as good as KSO in terms of minimizing apparent error

rates. And further, FCM sometimes generates identical solutions to KSO on various well known data

sets. This is another powerful indicator of the underlying (unknown) relationship between the KSO and

c-Means methods. Much can be done empirically to confirm or deny specific relationships between the

two methods.

We have itemized some similarities and differences between two approaches to the clustering of unlabeled

data - Hard/Fuzzy c-Means and Kohonen's self.organizing feature maps (KSO), and posed some questions

concerning each method. Successful resolution of these questions will benefit both models. Numerical

convergence properties and the neural-like behavior of both the extended KSO and FCM algorithms should

157

be established. Issues to be studied should include • robustness, adaptivity, parallelism, apparent error rates,

time and space complexity, type and rate of convergence, optimality tests, and initialization sensitivity.

5. REFERENCES

[1] Kohonen, T. Self-Organization and Associative Memory, 3rd Edition, Springer-Verlag, Berlin, 1989.

[2] Bezdek, J. _attern Recoanition with Fuzzy Ob!ective Function Algorithms, Plenum, New York, 1981.

[3] Duda, R. and Hart, P. Pattern Classification and Scene Analysis, Wiley, New York, 1973.

[4] Pao, Y.H. AdaDtive Pattern Recog_nition and Neural Networks, Addison-Wesley, Reading, 1989.

[5] Lipprnan, R. An Introduction to Neural Computing, IEEEASSP Magazine, April, 1987, 4-22.

[6] Ball, G. and Hall, D. A Technique for Summarizing Multivariate Data, Behav. Sci., 12, 1967, 153-155.

[7] Dunn, J.C. A Fuzzy Relative of the ISODATA Process, Jo. Cybernetics, 3, 1974, 32-57.

[8] Gustafson, D. and Kessel, W. Fuzzy Clustering with a Fuzzy Covariance Matdx, in P_K_,

1978, 761-766.

[9] Bezdek, J. C., Coray, C., Gunderson, R. and Watson, J. Detection and Characterization of Cluster
Substructure, I and It, SIAM Jo. of Appi. Math., 40(2), 1981,339-372.

[i0] Pedrycz, W. Algorithms of Fuzzy Clustering with Partial Supervision, Part. Recog. Letters, 3, 1985,
13-20.

[11] Dave, R. Fuzzy Shell Clustering and Applications to Circle Detection in Digital Images, in press, Int'l.
Jo. of Genera/Systems, 1989.

[_t2] Bobrowski, L. and Bezdek, J. c-Means Clustering with the [1 and f'_oNorms, in review, IEEE Trans.

SMC, 1990.

[13] Huntsberger, T. and Ajjimarangsee, P. Parallel Self-Organizing Feature Maps for Unsupervised
Pattern Recognition, in press, Int'/. Jo. Genera/Systems, 1990.

158

